Senin, 12 Januari 2015

Pneumatik

PNEUMATIK???

Pneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbangan. Orang yang pertama kali menggunakan alat pneumatik adalah orang Yunani bernama Ktesibio. Istilah pneumatik berasal dari Yunani kuno yaitu pneuma yang berarti hembusan (tiupan). Dengan kata lain pneumatik berarti mempelajari tentang gerakan angin (udara) yang dapat dimanfaatkan untuk menghasilkan tenaga dan kecepatan. (Drs. Suyanto, M.Pd, M.T, 2003 : 1)

Ciri-ciri dari sistem pneumatik sebagai berikut :
1. Sistem pengempaan, yaitu udara disedot atau diisap dari atmosphere kemudian dimampatkan (dikompresi) sampai batas tekanan kerja tertentu (sesuai dengan yang diinginkan). Dimana selama terjadinya kompresi ini suhu udara menjadi naik.
2. Pendinginan dan penyimpanan, yaitu udara hasil kempaan yang naik suhunya harus didinginkan dan disimpan dalam keadaan bertekanan sampai ke obyek yang diperlukan.
3. Ekspansi (pengembangan), yaitu udara diperbolehkan untuk berekspansi dan melakukan kerja ketika diperlukan.
4. Pembuangan, yaitu udara hasil ekspansi kemudian dibebaskan lagi ke atmosphere (dibuang).

Kelebihan dan Kekurangan Pneumatik
Kelebihan yang sangat menonjol adalah karena udara dapat mengembang dengan begitu kuat dan cepat di ruangan yang sempit dalam waktu yang singkat.
Selain itu ada kelebihan-kelebihan lainnya dibandingkan alat-alat yang lain. Kelebihan itu bisa dilihat dari : (Thomas Krist, 1993 : 6-8) (Krist,T, 1993)

1. Fluida kerja yang mudah diperoleh dan mudah ditransfer
a. Udara dimana saja tersedia dalam jumlah yang tak terhingga.
b. Saluran-saluran balik tidak diperlukan, karena udara bekas (udara yang telah memuai dan telah menyerahkan energinya) dapat dibuang bebas.
2. Dapat disimpan dengan baik.
a. Sumber udara mampat (kompresor) hanya memproduksi udara mampat kalau udara itu memang digunakan, jadi kompresor tidak selalu bekerja.
b. Pengangkutan dan penyimpanan dari tangki-tangki penampungan juga dimungkinkan.
3. Bersih dan kering.
a. Udara mampat adalah bersih, jadi kalau ada kebocoran pada saluran pipa benda-benda kerja ataupun bahan-bahan tidak akan menjadi kotor.
b. Udara mampat adalah kering, jadi kalau ada kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik (stain) minyak dan sebagainya.
4. Tidak peka terhadap suhu.
a. Udara bersih dapat digunakan sepenuhnya pada suhu-suhu tinggi dan pada nilai-nilai yang rendah.
b. Udara mampat juga dapat digunakan di tempat-tempat yang sangat panas.
c. Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali.
5. Aman terhadap ledakan dan kebakaran.
a. Keamanan kerja serta produksi besar dari udara mampat tidak mengandung bahaya kebakaran maupun ledakan.
b. Alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas.
6. Kesederhanaan (mudah dipelihara)
a. Karena kontruksinya sangat sederhana, peralatan-peralatan udara mampat hampir tidak peka gangguan.
b. Konstruksinya yang sederhana menyebabkan waktu motase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat diperbaiki sendiri.
c. Komponen-komponennya dengan mudah dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.
7. Konstruksi kokoh.
Pada umumnya komponen pneumatik kostruksinya kokoh sehingga tahan terhadap gangguan dan perlakuan-perlakuan kasar.
Namun demikian, udara bertekanan dan peralatan pneumatik masih tetap juga mempunyai kelemahan-kelemahan. Kekurangan dari sistem pneumatik antara lain: (Thomas Krist, 1993 : 9-10) 
1. Gangguan suara (bising).
Udara yang ditiup keluar menyebabkan kebisingan (desisan) terutama dalam ruang-ruang kerja yang sangat mengganggu.
2. Mudah menguap (volatile).
Udara mampat mudah menguap (volatile). Terutama dalam jaringan udara-udara mampat yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak dan menyebabkan udara mampat mengalir keluar.
3. Bahaya pembekuan.
Pada waktu pemuaian (expansion) mendadak dan penurunan suhu yang berkaitan dengan pemuaian mendadak ini, dapat terjadi pembentukan es.
4. Gaya tekan terbatas.
Udara mampat hanya dapat membangkitkan gaya yang terbatas. Untuk gaya-gaya yang besar pada suatu tekanan bisa dalam jaringan, dan dibutuhkan diameter torak yang besar.
5. Biaya energi tinggi.
Biaya produksi udara mampat tinggi, oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus.
Silinder Pneumatik
      Silinder pneumatik merupakan elemen kerja atau bagian pneumatik yang akan menghasilkan gerak lurus bolak-balik, baik gerak itu beraturan maupun yang dapat diatur. Berdasarkan prinsip kerjanya silinder pneumatik dapat dibedakan menjadi 2 yaitu :
1. Silinder kerja tunggal (single acting cylinder / SAC)
Silinder kerja tunggal digerakkan hanya satu sisi arah saja. Oleh karenanya hanya akan menghasilkan satu arah saja. Untuk gerak baliknya digunakan tenaga yang didapat dari suatu pegas yang telah terpasang di dalam silinder tersebut, sehingga besar kecepatannya tergantung dari pegas yang dipakai.
                                                          Gambar silinder tunggal
Keterangan: 
1. Rumah silinder
2. Lubang masuk udara bertekanan
3. Piston
4. Batang piston
5. Pegas pengembali
Prinsip kerja
Dengan memberikan udara bertekan pada satu sisi permukaan piston, sisi yang lain terbuka ke atmosfir. Silinder hanya bisa memberikan gaya kerja satu arah. Gerakan piston kembali masuk diberikan oleh gaya pegas yang ada didalam silinder direncanakan hanya untuk mengembalikan silinder ke posisi awal.
Kegunaan
Menurut konstruksinya, silinder kerja tunggal dapat melaksanakan berbagai fungi gerakan:
a. Menjepit benda kerja
b. Pemotongan
c. Pengepressan
d. penganggatan


2. Silinder kerja ganda (double acting cylinder / DAC)
Berbeda dengan silinder kerja tunggal, elemen ini dapat digerakkan dari dua arah. Pada waktu langkah maju dan mundur dapat dipakai untuk kerja, sehingga dalam hal ini akan dapat digunakan semua langkah. Secara prinsip panjang langkah torak tidak sampai mendekati ujungnya. Sama halnya pada silinder kerja tunggal, pistonnya terbuat dari bahan fleksibel dan dipasang pada torak dari bahan logam.
                                                               Gambar silinder ganda
Keterangan: 
1) batang / rumah silinder.
2) saluran masuk. 
3) saluran keluar 
4) batang piston
5) seal
6) bearing
7) piston
Prinsip kerja
Dengan memberikan udara bertekanan pada satu sisi permukaan piston ( arah maju ) sedangkan arah yang lain (arah mundur) terbuka ke atmosfir, maka gaya diberikan pada sisi permukaan tersebut sehingga batang piston akan terdorong keluar sampai mencapai batas maksimun dan berhenti. . Gerakan silinder kembali masuk, diberikan oleh gaya pada sisi permukaan batang piston (arah mundur) dan sisi permukaan piston (arah maju) udaranya terbuka ke atmosfir.
Keuntungan silinder kerja ganda dapat dibebani pada kedua arah gerakan batang pistonnya. Ini memungkinkan pemasangannya lebih fleksibel. Gaya yang diberikan pada batang piston gerakan keluar lebih besar daripada gerakan masuk. Karena efektif permukaandikurangi pada sisi batang piston oleh luas permukaan batang piston.
      Katup-katup Pneumatik secara garis besar dibagi menjadi 5 (lima) kelompok menurut fungsinya, yaitu: (Drs. Suyanto, M.Pd, M.T,2003 : 40 )
1) katup pengarah ( direction way valve )
Katup pengarah adalah perlengkapan yang menggunakan lubang-lubang saluran kecil yang akan dilewati oleh aliran udara bertekanan, tereutama untuk memulai (start) dan berhenti (stop) serta mengarahkan aliran itu.
2) Katup pengontrol aliran ( flow control valve )
Katup pengontrol aliran adalah peralatan pneumatic yang berfungsi sebagai pengatur dan pengendali aliran udara bertekanan (pengendali angin) khususnya udara yang harus masuk kedalam silinder-silinder pneumatik. Ada juga aliran angin tersebut harus di kontrol untuk peralatan pengendali katup-katup pneumatik.
3) Katup pengontrol dan pengatur tekanan (pressure control valve)
Katup pengontrol dan pengtur tekanan adalah bagian dari komponen pneumatik yang mempengaruhi tekanan atau dikontrol oleh besarnya tekanan.
Macam-macam katup ini ada 3 kategori, yaitu:
     a) Katup pengatur tekanan (pressure regulating valve)
Katup ini berfungsi untuk menjaga tekanan supaya terjadi tekanan yang tetap (konstan). Aplikasi dari katup ini misalnya tekanan yang telah diatur (distel) pada manometer harus dipindahkan pada batas konstan terhadap elemen kerja atau penggerak walaupun tekanan yang disuplai berubah.
      b) Katup pembatas tekanan (pressure limiting valve)
Katup ini digunakan utamanya sebagai katup pengaman. Kerja utamanya adalah mencegah tekanan udara yang berlebihan dari sistem pneumatik yang ada. Jika tekanan maksimum sudah tercapai pada bagian masuk dari katup, maka bagian keluar dari katup terbuka sehingga udara bertekana akan keluar ke atmosfer.
      c) Katup rentenan atau katup rangkai (sequence valve) 
Prinsip kerja katup ini hampir sama dengan katup pembatas.
4) Katup penutup (shut-off valve)
Katup ini berfungsi sebagai pemberi atau pencegah aliran udara yang tak terbatas. Artinya, jika aliran udara harus dihentikan, maka katup akan bertindak. Tetapi jika di butuhkan aliran kecil, maka katup akan membuka sedikit saja. Pemakain sederhana adalah pada keran air.
5) Katup-katup kombinasi/gabungan (combination valve)
Katup kombinasi merupakan katup pneumatik yang tersusun sedemikian rupa hingga kerjanya menjadi sangat spesifik. Keberadaan katup-katup ini memang dirancang untuk maksud-maksud tertentu yang tentunya disesuaikan dengan kebutuhan operasi di segi otomatisasi.
Macam-macam Simbol Pada Katup
 
 

0 komentar:

Posting Komentar

Total Tayangan Halaman